Using Wolbachia to Eliminate Dengue: Will the Virus Fight Back?
Recent field trials have demonstrated that dengue incidence can be substantially reduced by introgressing strains of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to disseminated infection by positive-sense RNA viruses like dengue. However, RNA viruses are well known to adapt to antiviral pressures. Here, we review the viral infection stages where selection for Wolbachia-resistant virus variants could occur. We also consider the genetic constraints imposed on viruses that alternate between vertebrate and invertebrate hosts, and the likely selection pressures to which dengue virus might adapt in order to be effectively transmitted by Ae. aegypti that carry Wolbachia. While there are hurdles to dengue viruses developing resistance to Wolbachia, we suggest that long-term surveillance for resistant viruses should be an integral component of Wolbachia-introgression biocontrol programs.
Anti-Acanthamoeba synergistic effect of chlorhexidine and Garcinia mangostana extract or α-mangostin against Acanthamoeba triangularis trophozoite and cyst forms.
Sangkanu S, Mitsuwan W, Mahabusarakam W, Jimoh TO, Wilairatana P, Girol AP, Verma AK, de Lourdes Pereira M, Rahmatullah M, Wiart C, Siyadatpanah A, Norouzi R, Mutombo PN, Nissapatorn V
Estimating and mitigating the risk of COVID-19 epidemic rebound associated with reopening of international borders in Vietnam: a modelling study.
Pham QD, Stuart RM, Nguyen TV, Luong QC, Tran QD, Pham TQ, Phan LT, Dang TQ, Tran DN, Do HT, Mistry D, Klein DJ, Abeysuriya RG, Oron AP, Kerr CC
COVID-19