close Icon

Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion.

Nguyen W, Dans MG, Ngo A, Gancheva MR, Romeo O, Duffy S, de Koning-Ward TF, Lowes KN, Sabroux HJ, Avery VM, Wilson DW, Gilson PR, Sleebs BE

VIEW FULL ARTICLE
  • Journal European journal of medicinal chemistry

  • Published 04 Feb 2021

  • Volume 214

  • Pagination 113253

  • DOI 10.1016/j.ejmech.2021.113253

Abstract

The emerging resistance to combination therapies comprised of artemisinin derivatives has driven a need to identify new antimalarials with novel mechanisms of action. Central to the survival and proliferation of the malaria parasite is the invasion of red blood cells by Plasmodium merozoites, providing an attractive target for novel therapeutics. A screen of the Medicines for Malaria Venture Pathogen Box employing transgenic P. falciparum parasites expressing the nanoluciferase bioluminescent reporter identified the phenylsulfonyl piperazine class as a specific inhibitor of erythrocyte invasion. Here, we describe the optimization and further characterization of the phenylsulfonyl piperazine class. During the optimization process we defined the functionality required for P. falciparum asexual stage activity and determined the alpha-carbonyl S-methyl isomer was important for antimalarial potency. The optimized compounds also possessed comparable activity against multidrug resistant strains of P. falciparum and displayed weak activity against sexual stage gametocytes. We determined that the optimized compounds blocked erythrocyte invasion consistent with the asexual activity observed and therefore the phenylsulfonyl piperazine analogues described could serve as useful tools for studying Plasmodium erythrocyte invasion.