close search

RNA sequencing of single allergen-specific memory B cells after grass pollen immunotherapy: Two unique cell fates and CD29 as a biomarker for treatment effect.

McKenzie CI, Varese N, Aui PM, Reinwald S, Wines BD, Hogarth PM, Thien F, Hew M, Rolland JM, O'Hehir RE, van Zelm MC

VIEW FULL ARTICLE
  • Journal Allergy

  • Published 01 Oct 2022

  • Volume 78

  • ISSUE 3

  • Pagination 822-835

  • DOI 10.1111/all.15529

Abstract

competitively inhibits functional IgE on the surface of effector cells, such as mast cells and basophils, from binding to allergens. To further understand the important role memory B-cell (Bmem) responses play in mediating the beneficial effects of SLIT, we assessed changes in allergen-specific Bmem subsets induced by SLIT for grass pollen allergy.

Blood samples were collected twice outside the pollen season from twenty-seven patients with sensitization to ryegrass pollen (RGP; Lolium perenne) and seasonal rhinoconjunctivitis. Thirteen received 4-month pre-seasonal SLIT for grass pollen allergy, and 14 received standard pharmacotherapy only. Single-cell RNA sequencing was performed on FACS-purified Lol p 1-specific Bmem before and after SLIT from four patients, and significant genes were validated by flow cytometry on the total cohort.

, CD23, and CD29 after SLIT.

A clinically successful 4 months course of SLIT for grass pollen allergy induces two transcriptionally unique Bmem fates. Associated changes in surface-expressed proteins on these Bmem subsets can be used as early biomarkers for treatment effects.