close Icon

Increasing prevalence of K65K and K66K in HIV-1 subtype B reverse transcriptase.

Telwatte S, Brumme CJ, Hearps AC, Latham CF, Hayward JA, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G

VIEW FULL ARTICLE
  • Journal AIDS (London, England)

  • Published 22 Dec 2017

  • Volume 30

  • ISSUE 18

  • Pagination 2787-2793

  • DOI 10.1097/QAD.0000000000001272

Abstract

Synonymous substitutions K65K/K66K in HIV-1 reverse transcriptase alleviate fitness and fidelity defects in HIV-1 molecular clones harboring thymidine analogue mutations (TAMs); however, their potential for transmission and persistence is unknown. Here, we investigated the temporal appearance of K65K/K66K relative to TAMs in a HIV-1 cohort, their prevalence over time, and their impact on viral fitness in the context of patient-derived reverse transcriptase sequences.

Retrospective analyses of the temporal appearance and longitudinal prevalence of synonymous substitutions and drug resistance mutations were performed using the British Columbia Centre for Excellence in HIV/AIDS Drug Treatment Program (DTP) database. Plasma-derived HIV-1 from the DTP was used to generate infectious molecular clones. Growth competition assays were performed to determine viral fitness.

The prevalence of K65K/K66K in drug-naïve individuals tripled from 11% in 1997 to 37% in 2014 (P < 0.0001, n = 5221), with K66K mainly accounting for the increase. These mutations emerged in drug-treated individuals without TAMs in 14% of the cohort and conferred a fitness advantage in the context of patient-derived multidrug-resistant (MDR) virus in the absence of drug.

The appearance of K65K/K66K in drug-treated individuals was largely independent of TAMs, suggesting alternative factors are likely associated with their emergence. The increasing K65K/K66K prevalence to over a third of treatment-naïve individuals in the mostly subtype B DTP cohort and their ability to confer a fitness advantage to multidrug-resistant virus might explain the transmission and persistence of virus harbouring K65K/K66K in untreated individuals, and highlights their role in adaptive HIV-1 evolution.