close Icon

Disulfide bond that constrains the HIV-1 gp120 V3 domain is cleaved by thioredoxin.

Azimi I, Matthias LJ, Center RJ, Wong JW, Hogg PJ

VIEW FULL ARTICLE
  • Journal The Journal of biological chemistry

  • Published 13 Oct 2010

  • Volume 285

  • ISSUE 51

  • Pagination 40072-80

  • DOI 10.1074/jbc.M110.185371

Abstract

A functional disulfide bond in both the HIV envelope glycoprotein, gp120, and its immune cell receptor, CD4, is involved in viral entry, and compounds that block cleavage of the disulfide bond in these proteins inhibit HIV entry and infection. The disulfide bonds in both proteins are cleaved at the cell surface by the small redox protein, thioredoxin. The target gp120 disulfide and its mechanism of cleavage were determined using a thioredoxin kinetic trapping mutant and mass spectrometry. A single disulfide bond was cleaved in isolated and cell surface gp120, but not the gp160 precursor, and the extent of the reaction was enhanced when gp120 was bound to CD4. The Cys(32) sulfur ion of thioredoxin attacks the Cys(296) sulfur ion of the gp120 V3 domain Cys(296)-Cys(331) disulfide bond, cleaving the bond. Considering that V3 sequences largely determine the chemokine receptor preference of HIV, we propose that cleavage of the V3 domain disulfide, which is facilitated by CD4 binding, regulates chemokine receptor binding. There are 20 possible disulfide bond configurations, and, notably, the V3 domain disulfide has the same unusual -RHStaple configuration as the functional disulfide bond cleaved in CD4.