Abstract
Malaria is caused by obligate intracellular parasites, of which Plasmodium falciparum is the most lethal species. In humans, P. falciparum merozoites (invasive forms of the parasite) employ a host of parasite proteins to rapidly invade erythrocytes. One of these is the P. falciparum apical membrane antigen 1 (PfAMA1) which forms a complex with rhoptry neck proteins at the tight junction. Here, we have placed the Pfama1 gene under conditional control using dimerizable Cre recombinase (DiCre) in P. falciparum. DiCre-mediated excision of the loxP-flanked Pfama1 gene results in approximately 80% decreased expression of the protein within one intraerythrocytic growth cycle. This reduces growth by 40%, due to decreased invasion efficiency characterized by a post-invasion defect in sealing of the parasitophorous vacuole. These results show that PfAMA1 is an essential protein for merozoite invasion in P. falciparum and either directly or indirectly plays a role in resealing of the red blood cell at the posterior end of the invasion event.