Support women in science at Burnet Institute
Donate today to support women in science at Burnet and their work to unlock the vaginal microbiome and reduce risk of HIV infection and preterm birth for women around the world.
Donate today to support women in science at Burnet and their work to unlock the vaginal microbiome and reduce risk of HIV infection and preterm birth for women around the world.
Envelope proteins of hepadnaviruses undergo a unique folding mechanism which results in the posttranslational translocation of 50% of the large envelope protein (L) chains across the endoplasmic reticulum.
This mechanism is essential for the eventual positioning of the receptor-binding domain on the surface of the virus particle and in duck hepatitis B virus (DHBV) is dependent on the small (S) envelope protein as part of the assembly process.
In this study, we report the identification of a third envelope protein, St, derived from the S protein and carrying functions previously attributed to S. Antibody mapping and mutagenesis studies indicated St to be C terminally truncated, spanning the N-terminal transmembrane domain (TM1) plus the adjacent cysteine loop.
We have previously shown that the mutation of two conserved polar residues in TM1 of S (SAA) eliminates L translocation and assembly. A plasmid expressing a functional equivalent of St was able to rescue assembly, demonstrating that this assembly defect is due to mutations of the corresponding residues in St and not in S per se. Immunofluorescence analysis showed that St directly affects L protein cellular localization.
These results indicate that St acts as a viral chaperone for L folding, remaining associated with the DHBV envelope upon secretion. The presence of St at a molar ratio of half that of L suggests that it is St which regulates L translocation to 50%.