Support women in science at Burnet Institute
Donate today to support women in science at Burnet and their work to unlock the vaginal microbiome and reduce risk of HIV infection and preterm birth for women around the world.
Donate today to support women in science at Burnet and their work to unlock the vaginal microbiome and reduce risk of HIV infection and preterm birth for women around the world.
Respiratory syncytial virus (RSV) G glycoprotein mediates cell attachment through surface glycosaminoglycans (GAGs). Feldman et al. [10] suggested that specific basic amino acids in residues 184-198 of G defined a critical heparin binding domain (HBD). To further define the G HBD we made a series of truncated G proteins expressed in Escherichia coli. G88 (G residues 143-231), bound to HEp-2 cells in a dose dependent manner and binding was inhibited >99% with heparin. Cell binding of G88 was unaltered by alanine substitution mutagenesis of all basic amino acids in Feldman’s region 184-198. A G88 variant truncated beyond residue 198, G58, and G58 fully alanine substituted in the region 184-198, G58A6, bound to HEp-2 cells about half as well and 100-fold less well than G88, respectively. G88 and all alanine substitution mutants of G88 inhibited RSV plaque formation by 50% (ID(50)) at concentrations of approximately 50 nM; the ID(50) of G58 was approximately 425 nM while G58A6 had an ID(50) >1600 nM. These data show that the G HBD includes as much as residues 187-231, that there is redundancy beyond the previously described HBD, and that the cell-binding and virus infectivity-blocking functions of these recombinant G proteins were closely linked and required at least one HBD.